Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
NMR Biomed ; 36(8): e4923, 2023 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2274196

RESUMEN

Hyperpolarized 129 Xe MRI (Xe-MRI) is increasingly used to image the structure and function of the lungs. Because 129 Xe imaging can provide multiple contrasts (ventilation, alveolar airspace size, and gas exchange), imaging often occurs over several breath-holds, which increases the time, expense, and patient burden of scans. We propose an imaging sequence that can be used to acquire Xe-MRI gas exchange and high-quality ventilation images within a single, approximately 10 s, breath-hold. This method uses a radial one-point Dixon approach to sample dissolved 129 Xe signal, which is interleaved with a 3D spiral ("FLORET") encoding pattern for gaseous 129 Xe. Thus, ventilation images are obtained at higher nominal spatial resolution (4.2 × 4.2 × 4.2 mm3 ) compared with gas-exchange images (6.25 × 6.25 × 6.25 mm3 ), both competitive with current standards within the Xe-MRI field. Moreover, the short 10 s Xe-MRI acquisition time allows for 1 H "anatomic" images used for thoracic cavity masking to be acquired within the same breath-hold for a total scan time of about 14 s. Images were acquired using this single-breath method in 11 volunteers (N = 4 healthy, N = 7 post-acute COVID). For 11 of these participants, a separate breath-hold was used to acquire a "dedicated" ventilation scan and five had an additional "dedicated" gas exchange scan. The images acquired using the single-breath protocol were compared with those from dedicated scans using Bland-Altman analysis, intraclass correlation (ICC), structural similarity, peak signal-to-noise ratio, Dice coefficients, and average distance. Imaging markers from the single-breath protocol showed high correlation with dedicated scans (ventilation defect percent, ICC = 0.77, p = 0.01; membrane/gas, ICC = 0.97, p = 0.001; red blood cell/gas, ICC = 0.99, p < 0.001). Images showed good qualitative and quantitative regional agreement. This single-breath protocol enables the collection of essential Xe-MRI information within one breath-hold, simplifying scanning sessions and reducing costs associated with Xe-MRI.


Asunto(s)
COVID-19 , Isótopos de Xenón , Humanos , Pulmón/diagnóstico por imagen , Respiración , Contencion de la Respiración , Imagen por Resonancia Magnética/métodos , Gases
4.
Radiology ; 305(3): 709-717, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2138184

RESUMEN

Background Post-COVID-19 condition encompasses symptoms following COVID-19 infection that linger at least 4 weeks after the end of active infection. Symptoms are wide ranging, but breathlessness is common. Purpose To determine if the previously described lung abnormalities seen on hyperpolarized (HP) pulmonary xenon 129 (129Xe) MRI scans in participants with post-COVID-19 condition who were hospitalized are also present in participants with post-COVID-19 condition who were not hospitalized. Materials and Methods In this prospective study, nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) were enrolled from June 2020 to August 2021. Participants underwent chest CT, HP 129Xe MRI, pulmonary function testing, and the 1-minute sit-to-stand test and completed breathlessness questionnaires. Control subjects underwent HP 129Xe MRI only. CT scans were analyzed for post-COVID-19 interstitial lung disease severity using a previously published scoring system and full-scale airway network (FAN) modeling. Analysis used group and pairwise comparisons between participants and control subjects and correlations between participant clinical and imaging data. Results A total of 11 NHLC participants (four men, seven women; mean age, 44 years ± 11 [SD]; 95% CI: 37, 50) and 12 PHC participants (10 men, two women; mean age, 58 years ±10; 95% CI: 52, 64) were included, with a significant difference in age between groups (P = .05). Mean time from infection was 287 days ± 79 (95% CI: 240, 334) and 143 days ± 72 (95% CI: 105, 190) in NHLC and PHC participants, respectively. NHLC and PHC participants had normal or near normal CT scans (mean, 0.3/25 ± 0.6 [95% CI: 0, 0.63] and 7/25 ± 5 [95% CI: 4, 10], respectively). Gas transfer (Dlco) was different between NHLC and PHC participants (mean Dlco, 76% ± 8 [95% CI: 73, 83] vs 86% ± 8 [95% CI: 80, 91], respectively; P = .04), but there was no evidence of other differences in lung function. Mean red blood cell-to-tissue plasma ratio was different between volunteers (mean, 0.45 ± 0.07; 95% CI: 0.43, 0.47]) and PHC participants (mean, 0.31 ± 0.10; 95% CI: 0.24, 0.37; P = .02) and between volunteers and NHLC participants (mean, 0.37 ± 0.10; 95% CI: 0.31, 0.44; P = .03) but not between NHLC and PHC participants (P = .26). FAN results did not correlate with Dlco) or HP 129Xe MRI results. Conclusion Nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) showed hyperpolarized pulmonary xenon 129 MRI and red blood cell-to-tissue plasma abnormalities, with NHLC participants demonstrating lower gas transfer than PHC participants despite having normal CT findings. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Parraga and Matheson in this issue.


Asunto(s)
COVID-19 , Isótopos de Xenón , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , COVID-19/diagnóstico por imagen , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Disnea , Síndrome Post Agudo de COVID-19
5.
Radiol Clin North Am ; 60(6): 1021-1032, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2031647

RESUMEN

Patients with diffuse lung diseases require thorough medical and social history and physical examinations, coupled with a multitude of laboratory tests, pulmonary function tests, and radiologic imaging to discern and manage the specific disease. This review summarizes the current state of imaging of various diffuse lung diseases by hyperpolarized MR imaging. The potential of hyperpolarized MR imaging as a clinical tool is outlined as a novel imaging approach that enables further understanding of the cause of diffuse lung diseases, permits earlier detection of disease progression before that found with pulmonary function tests, and can delineate physiologic response to lung therapies.


Asunto(s)
Enfermedades Pulmonares , Isótopos de Xenón , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Radiology ; 305(2): 466-476, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1909851

RESUMEN

BACKGROUND: In patients with post-acute COVID-19 syndrome (PACS), abnormal gas-transfer and pulmonary vascular density have been reported, but such findings have not been related to each other or to symptoms and exercise limitation. The pathophysiologic drivers of PACS in patients previously infected with COVID-19 who were admitted to in-patient treatment in hospital (or ever-hospitalized patients) and never-hospitalized patients are not well understood. PURPOSE: To determine the relationship of persistent symptoms and exercise limitation with xenon 129 (129Xe) MRI and CT pulmonary vascular measurements in individuals with PACS. MATERIALS AND METHODS: In this prospective study, patients with PACS aged 18-80 years with a positive polymerase chain reaction COVID-19 test were recruited from a quaternary-care COVID-19 clinic between April and October 2021. Participants with PACS underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLco), 129Xe MRI, and chest CT. Healthy controls had no prior history of COVID-19 and underwent spirometry, DLco, and 129Xe MRI. The 129Xe MRI red blood cell (RBC) to alveolar-barrier signal ratio, RBC area under the receiver operating characteristic curve (AUC), CT volume of pulmonary vessels with cross-sectional area 5 mm2 or smaller (BV5), and total blood volume were quantified. St George's Respiratory Questionnaire, International Physical Activity Questionnaire, and modified Borg Dyspnea Scale measured quality of life, exercise limitation, and dyspnea. Differences between groups were compared with use of Welch t-tests or Welch analysis of variance. Relationships were evaluated with use of Pearson (r) and Spearman (ρ) correlations. RESULTS: Forty participants were evaluated, including six controls (mean age ± SD, 35 years ± 15, three women) and 34 participants with PACS (mean age, 53 years ± 13, 18 women), of whom 22 were never hospitalized. The 129Xe MRI RBC:barrier ratio was lower in ever-hospitalized participants (P = .04) compared to controls. BV5 correlated with RBC AUC (ρ = .44, P = .03). The 129Xe MRI RBC:barrier ratio was related to DLco (r = .57, P = .002) and forced expiratory volume in 1 second (ρ = .35, P = .03); RBC AUC was related to dyspnea (ρ = -.35, P = .04) and International Physical Activity Questionnaire score (ρ = .45, P = .02). CONCLUSION: Xenon 129 (129Xe) MRI measurements were lower in participants previously infected with COVID-19 who were admitted to in-patient treatment in hospital with post-acute COVID-19 syndrome, 34 weeks ± 25 after infection compared to controls. The 129Xe MRI measures were associated with CT pulmonary vascular density, diffusing capacity of the lung for carbon monoxide, exercise capacity, and dyspnea. Clinical trial registration no.: NCT04584671 © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Wild and Collier in this issue.


Asunto(s)
COVID-19 , Femenino , Humanos , Persona de Mediana Edad , Monóxido de Carbono , COVID-19/diagnóstico por imagen , Disnea , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Calidad de Vida , Tomografía Computarizada por Rayos X , Isótopos de Xenón , Masculino , Adolescente , Adulto Joven , Adulto , Anciano , Anciano de 80 o más Años , Síndrome Post Agudo de COVID-19
8.
BMJ Open Respir Res ; 9(1)2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1854368

RESUMEN

BACKGROUND: Patients often report persistent symptoms beyond the acute infectious phase of COVID-19. Hyperpolarised 129Xe MRI provides a way to directly measure airway functional abnormalities; the clinical relevance of 129Xe MRI ventilation defects in ever-hospitalised and never-hospitalised patients who had COVID-19 has not been ascertained. It remains unclear if persistent symptoms beyond the infectious phase are related to small airways disease and ventilation heterogeneity. Hence, we measured 129Xe MRI ventilation defects, pulmonary function and symptoms in ever-hospitalised and never-hospitalised patients who had COVID-19 with persistent symptoms consistent with post-acute COVID-19 syndrome (PACS). METHODS: Consenting participants with a confirmed diagnosis of PACS completed 129Xe MRI, CT, spirometry, multi-breath inert-gas washout, 6-minute walk test, St. George's Respiratory Questionnaire (SGRQ), modified Medical Research Council (mMRC) dyspnoea scale, modified Borg scale and International Physical Activity Questionnaire. Consenting ever-COVID volunteers completed 129Xe MRI and pulmonary function tests only. RESULTS: Seventy-six post-COVID and nine never-COVID participants were evaluated. Ventilation defect per cent (VDP) was abnormal and significantly greater in ever-COVID as compared with never-COVID participants (p<0.001) and significantly greater in ever-hospitalised compared with never-hospitalised participants who had COVID-19 (p=0.048), in whom diffusing capacity of the lung for carbon-monoxide (p=0.009) and 6-minute walk distance (6MWD) (p=0.005) were also significantly different. 129Xe MRI VDP was also related to the 6MWD (p=0.02) and post-exertional SpO2 (p=0.002). Participants with abnormal VDP (≥4.3%) had significantly worse 6MWD (p=0.003) and post-exertional SpO2 (p=0.03). CONCLUSION: 129Xe MRI VDP was significantly worse in ever-hospitalised as compared with never-hospitalised participants and was related to 6MWD and exertional SpO2 but not SGRQ or mMRC scores. TRIAL REGISTRATION NUMBER: NCT05014516.


Asunto(s)
COVID-19 , Trastornos Respiratorios , COVID-19/complicaciones , Humanos , Imagen por Resonancia Magnética , Pruebas de Función Respiratoria , Isótopos de Xenón , Síndrome Post Agudo de COVID-19
11.
Radiology ; 301(1): E353-E360, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1430241

RESUMEN

Background SARS-CoV-2 targets angiotensin-converting enzyme 2-expressing cells in the respiratory tract. There are reports of breathlessness in patients many months after infection. Purpose To determine whether hyperpolarized xenon 129 MRI (XeMRI) imaging could be used to identify the possible cause of breathlessness in patients at 3 months after hospital discharge following COVID-19 infection. Materials and Methods This prospective study was undertaken between August and December of 2020, with patients and healthy control volunteers being enrolled. All patients underwent lung function tests; ventilation and dissolved-phase XeMRI, with the mean red blood cell (RBC) to tissue or plasma (TP) ratio being calculated; and a low-dose chest CT, with scans being scored for the degree of abnormalities after COVID-19. Healthy control volunteers underwent XeMRI. The intraclass correlation coefficient was calculated for volunteer and patient scans to assess repeatability. A Wilcoxon rank sum test and Cohen effect size calculation were performed to assess differences in the RBC/TP ratio between patients and control volunteers. Results Nine patients (mean age, 57 years ± 7 [standard deviation]; six male patients) and five volunteers (mean age, 29 years ± 3; five female volunteers) were enrolled. The mean time from hospital discharge for patients was 169 days (range, 116-254 days). There was a difference in the RBC/TP ratio between patients and control volunteers (0.3 ± 0.1 vs 0.5 ± 0.1, respectively; P = .001; effect size, 1.36). There was significant difference between the RBC and gas phase spectral full width at half maximum between volunteers and patients (median ± range, 567 ± 1 vs 507 ± 81 [P = .002] and 104 ± 2 vs 122 ± 17 [P = .004], respectively). Results were reproducible, with intraclass correlation coefficients of 0.82 and 0.88 being demonstrated for patients and volunteers, respectively. Participants had normal or nearly normal CT scans (mean, seven of 25; range, zero of 25 to 10 of 25). Conclusion Hyperpolarized xenon 129 MRI results showed alveolar capillary diffusion limitation in all nine patients after COVID-19 pneumonia, despite normal or nearly normal results at CT. © RSNA, 2021 See also the editorial by Dietrich in this issue.


Asunto(s)
COVID-19/fisiopatología , Disnea/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2
12.
J Allergy Clin Immunol ; 147(6): 2146-2153.e1, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1253078

RESUMEN

BACKGROUND: Measurement of regional lung ventilation with hyperpolarized 129Xe magnetic resonance imaging (129Xe MRI) in pediatric asthma is poised to advance our understanding of disease mechanisms and pathophysiology in a disorder with diverse clinical phenotypes. 129Xe MRI has not been investigated in a pediatric asthma cohort. OBJECTIVE: We hypothesized that 129Xe MRI is feasible and can demonstrate ventilation defects that relate to and predict clinical severity in a pediatric asthma cohort. METHODS: Thirty-seven children (13 with severe asthma, 8 with mild/moderate asthma, 16 age-matched healthy controls) aged 6 to 17 years old were imaged with 129Xe MRI. Ventilation defect percentage (VDP) and image reader score were calculated and compared with clinical measures at baseline and at follow-up. RESULTS: Children with asthma had higher VDP (P = .002) and number of defects per image slice (defects/slice) (P = .0001) than children without asthma. Children with clinically severe asthma had significantly higher VDP and number of defects/slice than healthy controls. Children with asthma who had a higher number of defects/slice had a higher rate of health care utilization (r = 0.48; P = .03) and oral corticosteroid use (r = 0.43; P = .05) at baseline. Receiver-operating characteristic analysis demonstrated that the VDP and number of defects/slice were predictive of increased health care utilization, asthma, and severe asthma. VDP correlated with FEV1 (r = -0.35; P = .04) and FEV1/forced vital capacity ratio (r = -0.41; P = .01). CONCLUSIONS: 129Xe MRI correlates with asthma severity, health care utilization, and oral corticosteroid use. Because delineation of clinical severity is often difficult in children, 129Xe MRI may be an important biomarker for severity, with potential to identify children at higher risk for exacerbations and improve outcomes.


Asunto(s)
Asma/diagnóstico , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón , Adolescente , Asma/terapia , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Curva ROC , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad
13.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1066782

RESUMEN

The recovery process of COVID-19 patients is unclear. Some recovered patients complain of continued shortness of breath. Vasculopathy has been reported in COVID-19, stressing the importance of probing pulmonary microstructure and function at the alveolar-capillary interface. While computed tomography (CT) detects structural abnormalities, little is known about the impact of disease on lung function. 129Xe magnetic resonance imaging (MRI) is a technique uniquely capable of assessing ventilation, microstructure, and gas exchange. Using 129Xe MRI, we found that COVID-19 patients show a higher rate of ventilation defects (5.9% versus 3.7%), unchanged microstructure, and longer gas-blood exchange time (43.5 ms versus 32.5 ms) compared with healthy individuals. These findings suggest that regional ventilation and alveolar airspace dimensions are relatively normal around the time of discharge, while gas-blood exchange function is diminished. This study establishes the feasibility of localized lung function measurements in COVID-19 patients and their potential usefulness as a supplement to structural imaging.


Asunto(s)
COVID-19/diagnóstico por imagen , COVID-19/fisiopatología , Pulmón/fisiopatología , Intercambio Gaseoso Pulmonar , Adulto , Femenino , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Alta del Paciente , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X , Isótopos de Xenón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA